链表,别名链式存储结构或单链表,用于存储逻辑关系为 “一对一” 的数据。与顺序表不同,链表不限制数据的物理存储状态,换句话说,使用链表存储的数据元素,其物理存储位置是随机的。

例如,使用链表存储 {1,2,3},数据的物理存储状态如图 1 所示:

链表随机存储数据
图 1 链表随机存储数据

我们看到,图 1 根本无法体现出各数据之间的逻辑关系。对此,链表的解决方案是,每个数据元素在存储时都配备一个指针,用于指向自己的直接后继元素。如图 2 所示:

各数据元素配备指针
图 2 各数据元素配备指针

像图 2 这样,数据元素随机存储,并通过指针表示数据之间逻辑关系的存储结构就是链式存储结构。

链表的节点

从图 2 可以看到,链表中每个数据的存储都由以下两部分组成:

  1. 数据元素本身,其所在的区域称为数据域;
  2. 指向直接后继元素的指针,所在的区域称为指针域;

即链表中存储各数据元素的结构如图 3 所示:

img
图 3 节点结构

图 3 所示的结构在链表中称为节点。也就是说,链表实际存储的是一个一个的节点,真正的数据元素包含在这些节点中,如图 4 所示:

链表中的节点
图 4 链表中的节点

因此,链表中每个节点的具体实现,需要使用 C 语言中的结构体,具体实现代码为:

1
2
3
4
typedef struct Link{
char elem; //代表数据域
struct Link * next; //代表指针域,指向直接后继元素
}link; //link为节点名,每个节点都是一个 link 结构体

头节点,头指针和首元节点

其实,图 4 所示的链表结构并不完整。一个完整的链表需要由以下几部分构成:

  1. 头指针:一个普通的指针,它的特点是永远指向链表第一个节点的位置。很明显,头指针用于指明链表的位置,便于后期找到链表并使用表中的数据;

  2. 节点:链表中的节点又细分为头节点首元节点和其他节点:

    • 头节点:其实就是一个不存任何数据的空节点,通常作为链表的第一个节点。对于链表来说,头节点不是必须的,它的作用只是为了方便解决某些实际问题;
    • 首元节点:由于头节点(也就是空节点)的缘故,链表中称第一个存有数据的节点为首元节点。首元节点只是对链表中第一个存有数据节点的一个称谓,没有实际意义;
    • 其他节点:链表中其他的节点;

因此,一个存储 {1,2,3} 的完整链表结构如图 5 所示:

完整的链表示意图
图 5 完整的链表示意图

注意:链表中有头节点时,头指针指向头节点;反之,若链表中没有头节点,则头指针指向首元节点。

链表的创建(初始化)

创建一个链表需要做如下工作:

  1. 声明一个头指针(如果有必要,可以声明一个头节点);
  2. 创建多个存储数据的节点,在创建的过程中,要随时与其前驱节点建立逻辑关系;

例如,创建一个存储 {1,2,3,4} 且无头节点的链表,C 语言实现代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
link * initLink() {
int i;
link * p = NULL;//创建头指针
link * temp = (link*)malloc(sizeof(link));//创建首元节点
//首元节点先初始化
temp->elem = 1;
temp->next = NULL;
p = temp;//头指针指向首元节点
//从第二个节点开始创建
for (i = 2; i < 5; i++) {
//创建一个新节点并初始化
link *a = (link*)malloc(sizeof(link));
a->elem = i;
a->next = NULL;
//将temp节点与新建立的a节点建立逻辑关系
temp->next = a;
//指针temp每次都指向新链表的最后一个节点,其实就是 a节点,这里写temp=a也对
temp = temp->next;
}
//返回建立的节点,只返回头指针 p即可,通过头指针即可找到整个链表
return p;
}

如果想创建一个存储 {1,2,3,4} 且含头节点的链表,则 C 语言实现代码为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
link * initLink(){
int i;
link * p=(link*)malloc(sizeof(link));//创建一个头结点
link * temp=p;//声明一个指针指向头结点,
//生成链表
for (i=1; i<5; i++) {
link *a=(link*)malloc(sizeof(link));
a->elem=i;
a->next=NULL;
temp->next=a;
temp=temp->next;
}
return p;
}

链表插入元素

同顺序表一样,向链表中增添元素,根据添加位置不同,可分为以下 3 种情况:

  • 插入到链表的头部(头节点之后),作为首元节点;
  • 插入到链表中间的某个位置;
  • 插入到链表的最末端,作为链表中最后一个数据元素;

虽然新元素的插入位置不固定,但是链表插入元素的思想是固定的,只需做以下两步操作,即可将新元素插入到指定的位置:

  1. 将新结点的 next 指针指向插入位置后的结点;
  2. 将插入位置前结点的 next 指针指向插入结点;

例如,我们在链表 {1,2,3,4} 的基础上分别实现在头部、中间部位、尾部插入新元素 5,其实现过程如图1 所示:

链表中插入元素的 3 种情况示意图
图 1 链表中插入元素的 3 种情况示意图

从图中可以看出,虽然新元素的插入位置不同,但实现插入操作的方法是一致的,都是先执行步骤 1 ,再执行步骤 2。

注意:链表插入元素的操作必须是先步骤 1,再步骤 2;反之,若先执行步骤 2,会导致插入位置后续的部分链表丢失,无法再实现步骤 1。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//p为原链表,elem表示新数据元素,add表示新元素要插入的位置
link * insertElem(link * p, int elem, int add) {
link * temp = p;//创建临时结点temp
link * c = NULL;
int i = 0;
//首先找到要插入位置的上一个结点
for (i = 1; i < add; i++) {
if (temp == NULL) {
printf("插入位置无效\n");
return p;
}
temp = temp->next;
}
//创建插入结点c
c = (link*)malloc(sizeof(link));
c->elem = elem;
//向链表中插入结点
c->next = temp->next;
temp->next = c;
return p;
}

链表删除元素

从链表中删除指定数据元素时,实则就是将存有该数据元素的节点从链表中摘除,但作为一名合格的程序员,要对存储空间负责,对不再利用的存储空间要及时释放。因此,从链表中删除数据元素需要进行以下 2 步操作:

  1. 将结点从链表中摘下来;
  2. 手动释放掉结点,回收被结点占用的存储空间;

其中,从链表上摘除某节点的实现非常简单,只需找到该节点的直接前驱节点 temp,执行一行程序:

1
temp->next=temp->next->next;

例如,从存有 {1,2,3,4} 的链表中删除元素 3,则此代码的执行效果如图 2 所示:

链表删除元素示意图
图 2 链表删除元素示意图

1
2
3
4
5
6
7
8
9
10
11
12
13
14
//p为原链表,add为要删除元素的值
link * delElem(link * p, int add) {
link * temp = p;
link * del = NULL;
int i = 0;
//temp指向被删除结点的上一个结点
for (i = 1; i < add; i++) {
temp = temp->next;
}
del = temp->next;//单独设置一个指针指向被删除结点,以防丢失
temp->next = temp->next->next;//删除某个结点的方法就是更改前一个结点的指针域
free(del);//手动释放该结点,防止内存泄漏
return p;
}

链表查找元素

在链表中查找指定数据元素,最常用的方法是:从表头依次遍历表中节点,用被查找元素与各节点数据域中存储的数据元素进行比对,直至比对成功或遍历至链表最末端的 NULL(比对失败的标志)。

因此,链表中查找特定数据元素的 C 语言实现代码为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
//p为原链表,elem表示被查找元素、
int selectElem(link * p, int elem) {
//新建一个指针t,初始化为头指针 p
link * t = p;
int i = 1;
//由于头节点的存在,因此while中的判断为t->next
while (t->next) {
t = t->next;
if (t->elem == elem) {
return i;
}
i++;
}
//程序执行至此处,表示查找失败
return -1;
}

链表更新元素

更新链表中的元素,只需通过遍历找到存储此元素的节点,对节点中的数据域做更改操作即可。

直接给出链表中更新数据元素的 C 语言实现代码:

1
2
3
4
5
6
7
8
9
10
11
12
//更新函数,其中,add 表示更改结点在链表中的位置,newElem 为新的数据域的值
link *amendElem(link * p, int add, int newElem) {
int i = 0;
link * temp = p;
temp = temp->next;//在遍历之前,temp指向首元结点
//遍历到被删除结点
for (i = 1; i < add; i++) {
temp = temp->next;
}
temp->elem = newElem;
return p;
}

转载自:http://data.biancheng.net/view/160.html